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(ABOUT_THIS MANUAL)

Preparing an instruction manual for the new Edmund
Analog Computer brought us up against a difficult
problem: we don't know who you are. You who are
reading this may be a twelve-year-old boy or girl in
the fifth or sixth grade, or a high-school senior, or
a professional mathematician with many years of edu-
cation and experience. Just how are we goingto speak
to you if we don't know who and what you are? We may
use words and ideas that are over your head and leave
you completely confused, or we may bore you by re-
hashing elementary subjects you don't want to be both-
ered with.

Our only way out has been to try to write for all of
you. You will have to helpusbybeing selective in your
reading of the manual. If you come across something
that is too advanced for you, just don't worry about it.
You will still be able to use the computer for simpler
calculations. Andif, onthe other hand, youfind us going
over ground that is quite familiar to you, then please
skip to the next section that does meet your needs.
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{ EDMUND )

The Edmund Analog Computer was designed to demon-
strate electrical analog computing principles and to
permit rapid approximate solutions to practical math-
ematical problems. It is a valuable teaching aid and
refresher for young and old alike. Simplicity, quality,
and reasonable accuracy were the primary consider-
ations in the designing of the instrument. The compu-
ter can be assembled by anyone in an hour or two.

Analog computers solve problems by analogy. That
is, they convert numbers into something else which
can be more easily manipulated than the numbers
themselves. One simple analog computer is the slide
rule, in which numbers are converted into easily
measured distances. In the Edmund analog computer,
numbers are converted into readily measurable vol-
tages,

All analog computers solve problems by making a
measurement of one sort or another. Consequentlythe
accuracy of computation is limited by the accuracy of
measurement. Error is inherent in all analog compu-
ters, and the magnitude of the error depends on the
number of computations required to solvethe problem
as well as on numerous other factors. Limiting the
error even to 1% in large problems necessitates the
use of extremely accurate computer elements.

Errors even as high as 5%, however, are permissi-
ble in many engineering problems; thus the analog
computer finds numerous applications in engineering,
industry, and science. Errors of about 2% to 3% can
be expected from a properly assembled and adjusted
Edmund Analog Computer.

For problems that are very complex orthat require
precise solutions, digital computers are used. Digital
computers employ discrete values represented by a
number of electrical pulses or, in the case of a desk
calculator, by a number of gear teeth. An oversimpli-
fied way of putting it is that a digital computer solves
problems by counting.

Digital computers are expensive and complicated
and usually require a specialist 'programmer' for
translation of problems into 'machine language."

Analog computers, on the other hand, are less ex-
pensive and are well understood by most engineers
who can readily place a problem on an analog com-
puter in a short period of time and get quick, approxi-
mate answers to most of their problems. Much of
present day equipment has components with 10% to
20% tolerances; analog computer results are therefore
often more than good enough for equipment design
and final answers to problems. An analog computer
also provides quick checks for detecting large errors
that creep into problems solved by more complicated
methods.

ASSEMBLY INSTRUCTIONS

a4

R IST

Potentiometers, 50 ohm, with 2 nuts and 2 washers
Potentiometer, 1,000 ohm, with 2nutsand 2 washers
Meter, 1-0-1 ma., with spring metal mounting clip
Push button switch with 2 nuts and 2 washers
Battery holder

Knobs

Plastic pointers

Feet, #22 insulated wire

Piece, double adhesive tape

Panel board

Corrugated cardboard tray, 20" x 8-1/2" x 2"
Strip, corrugated cardboard, 1-1/2" x 60"
Instruction manual
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We suggest that you check off each step as you com-
plete it to make certain that you do not skip anything.

MOUNTI THE C P

1. Remove all the parts and check them against the
parts list,

2. Refer to Figure 1 for the positioning of the various
components.

3. Mount the potentiometers asfollows: On the thread-
ed bushing of each potentiometer place a hexnut and
turn it down until about 3/16" of threads are ex-
posed between the nut and the end of the bushing.
Place a washer over the bushing. Push the bushing
through the appropriate hole (see Figure 1) in the
panel board so that the bushing and shaft protrude
beyond the face (printed side) of the panel. Place
another washer and nut on the bushing. Position the
potentiometer so that the terminals are at the top
(see Figure 1). Tighten the nut sothat the potentio-
meter can not slip around in the hole. Mount all
three potentiometers in this manner.

4. Mount the push-button switch in its hole as shown
in Figure 1. Use two nuts and two washers just as
you did with the potentiometers.

5. Insert the meter in its hole and fastenit in place
by placing the spring-metal clip over the back of
the meter and pushing the clip firmly against the
panel, (Do not be concerned if the meter needle is
not precisely centered. The rest position of the
needle is unimportant.) -

6. Take the strip of double adhesive tape and peel of:
the tan protective layer. Pressthe adhesive surface
firmly to the back of the battery holder. Peel off
the blue protective layer. Press the battery holder
firmly into place on the panel in the position shown
in Figure 1. (Some kits may have the adhesive al-
ready attached to the holder. In this case skip the
first step. Simply remove the tan coveringandpress
the holder into place.) In removing the protective
covering from the adhesive tape, don't try to lift it
at the edge. Use a finger nail or any sharp instru-
ment and lift the tape at one of the pre-cut seams.
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BATTERIES [;]N HOLDER

SWITCH

POT C
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WIRING THE COMPUTER
7.

11.
12,
13.
14.
15,

18.

17.

18,

19.

Pictorial view showing rear of panel with all components and wiring.

FIGURE 1

20. Rotate the shaft of potentiometer A so that it is

See Figure 1

Measure and cut off wire long enough to connect
lug 1 at the left (-) endof the battery holder to lug
1 of potentiometer C. Strip off about 1/2" of insula-
tion from each end. Crimp the wire firmlyaround
each lug with a pair of pliers. (To simplify things,
we will henceforth refer to tpe potentiometersas
""pots', a standard nickname for them.)

. In a similar manner, connect lug 2 atthe right (+)

end of. the battery holdertolug 1 of the push button
switch.

Connect lug 1 of pot C to lug 1 of pot B.

Connect lug 2 of pot C to lug 1l of the meter. Note:
be very careful when crimping wires around the
meter lugs. Excessive movement of these lugs
may break the delicate wires inside the meter.
Connect lug 3 of pot C to lug 3 of pot A.

Connect lug 1 of pot B to lug 1 of pot A.

Connect lug 2 of pot B to lug 2 of the meter.
Connect lug 3 of pot B to lug 2 of pot A.

Connect lug 3 of pot A to lug 2 of the push button
switch.

Insert two size D dry cells (the standardflashlight
size) in the battery holder with their positive ter-
minals (the center posts) to the right.

Using a pin, ice pick, or other sharp pointed object
and a ruler as a guide, score a shallow groove in
each of the three plastic pointersasshownin Fig-
ure 3.

Using a pen and a ruler, fillthe scribed lines with
ink. India ink is best, but ordinary writing ink will
serve.

Cement a plastic poihter to the backof each of the
three knobs using Dupont's or similar household
cement. Be sure to place the pointersonthe knobs
so that the inked lines will be on the underneath
surface, next to the panel.

turned counterclockwise as far asit will go. Place
a pointer knob on the shaft with the indicator line
over the left index mark (the short mark just be-
fore the zero). Tighten the knob setscrew with a
small screwdriver. Rotate the knob fully clock-
wise. Do not force the knob. The hairline should
be over or very close to the right index mark (the
short mark just past 1.0). In some cases, the
variations in the amount of travel for different
potentiometers may make it impossible to set the
pointer so that the indicatorline coincides withthe
index marks at both extremes of rotation. If this
occurs with one of your potentiometers, split the
difference by setting the knob so that the indicator
line overshoots (or undershoots) the indices by
equal amounts at both extremes.
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Method of mounting pﬂtentmmeters.
FIGURE 2




21. Place knobs on pot B and pot C and adjust them in
the same manner.

22. Before placing the panel in the corrugated tray,
take the 1-1/2" x 60" strip of corrugated card-
board and place it in the tray so that it bends
around the corners and stands awayfromthe walls
of the tray. The strip will then support the panel
when it is placed in the tray. For more rigidity,
you may wish to cement the strip to the back of
of the panel.

TESTING THE COMPUTER

23. Test the computer by trying some simple multi-
plication problems following the method explained
in the next section of this manual. If your computer
does not operate properly, checkfirst to see if the
dry cells are properly inserted in the battery
holder (see Figure 1), then recheck your wiring,

SOLDERING THE CONNECTIONS
24. With the wiring completed and tested, you may
wish to solder all the wiring connections thus
assuring greater accuracy in the calculations you
will make with the computer. If you do not have
a soldering iron, perhaps alocal radio repair man
or amateur radio operator will do the soldering
for you or allow you to use his equipment. Ob-
serve the following simple precautions:
(a) Use only rosin-core solder. Acid flux
solder will eventually cause the joints to
corrode. Such corrosion will increase the
resistance to the flow of current, thereby
introducing errors into the calculations
made with the computer.

(b) When soldering leads tothe meterlugs,
use extra care. The meter case is made
of a plastic that meltsatfairly lowtemper-
atures. Use the smallest amount of heat
that will do the joband "heat sink' the lugs.
"Heat sinking" is atechnique for protecting
a delicate part by conducting heat away
from it with some tool. Hold the lug with a
pair of long-nosed pliers (between the hole
and the meter case) while soldering. If the
lugs are loosened excessively by the heat
of soldering, a drop of Dupont's or other
household cement placed where the lugs
enter the case will hold them securely.

MULTIPLICATION: INTRODUCTORY DIRECTIONS

The basic computer equation is AB = C where the
letters stand for numbers setforthe respective poten-
tiometers as indicated by the pointer hairlines.

To multiply two numbers, set one number on A and
the other number on B. Depress and hold down the
pushbutton switch and at the same time rotate C until
the meter needle approaches zero. Then alternately
press and release the switch while adjusting the read-
ing of C until the needle does not move when the switch

is pressed and released. (This condition will hereafter
be referred to as null.) Null does not necessarily
coincide with the zero point on the meter scale. Be-
cause of magnetic effects it may be somewhat off zero
in either direction,

When null is achieved on the meter, the answer to
the problem will appear under the hairline of C.

Numbers may be selected from the linear or the
trigonometric function scales on the potentiometers.
The discussion in this section will be limited to the
linear (outer) scale.

Note that the linear scale has two kinds of gradua-
tions onit, long and short. The short graduations rep-
resent hundredths; the long graduations that are num-
bered represent tenths. Thus the first short graduation
next to zero represents .01, the second .02, and so on,
The first unmarked long graduation represents .05
and the second long graduation represents .1, as it is
marked. If this type of calibration is not familiar to
you, then you shouldbecome accustomedtoitas quick-
ly as possible by practicing repeatedly until you can
set any desired number almost without conscious
thought.

If for example you wish to set the pointer for .73,
then you will set the hairline over the third short
marking after .7. If you wish to set .99, you will set
the pointer over the last short marking before 1.0,

Here are some examples to illustrate computer
operation:

Method of scribing hairline on pointers.
FIGURE 3

[ETxample 1:

Set the hairline on Aover .4, Setthe hairline on B over
.8. Depress the switch and rotate C until the meter
needle approaches zero. Then alternately press and
release the switch while adjusting C until null is
achieved. The answer will now appear under the hair-
line of knob C.

4 x.8 = 7]




You know, of course, that the answer should be .32,
If your answer on the computer lies between .31 and
.33 then you can be content that you have done a good
job of adjusting the knobs properly on the potentio-
meter shafts and of setting and reading the computer.

As you use the computer, experience will make your
eyes more sensitive to minor fluctuations of the meter
needle. This will enable you to become more and more
precise in recognizing the null position.

If your answer lies appreciably outside the range of
.31 to .33, check first to be sure there is no error in
the way you have set pot Aandpot B or in your reading
of pot C. Be sure that the hairline is precisely over
the appropriate graduation on each dial.

If after checking the setting of the pots you still
have a reading onCthatisoutsidethe .31 to .33 range,
then you should check your assembly and wiring of
the computer carefully to see whether you have made
some mistake. Check also to be sure that none of the
knobs has slipped on its shaft.

Always be especially careful in nulling. Be certain
that there is no motion in the meter before you read
your results. Patience and care in securing nulls will
pay off in increased accuracy.

|Example 2: .37 x .92 = ?]

Set the hairlines over .37 on A and .92 on B. Adjust C

for meter null. The answer will appear under the hair-
line on C. The long-hand result, is .3404. Your com-
puter result should lie between .33 and . 35.

It is possible to interpolate a third place into your
result, For example, if the hairline lies about half way

between .51 and .52, you can read this as .515. This
practice, however, is not sound mathematically or
scientifically. In general, stick to two-place answers
on your computer.

In setting the factors, however, asinthe next exam-
ple, it is both permissible and advisable to set a third
place figure by interpolation. Rememberthisasabasic
rule for use of the computer: set factorsto three places
if necessary but read results to two places only.

|Example 3. .855 x .567 = ?]

Set A to .855 (1/2 way between .85 and .86) and B to
.567 (about 7/10 of the way between .56 and .57). Ad-
just C for meter null. The result on C will probably
lie between .475 and .495, thus comparing quite rea-
sonably with the long-hand result of .484785, which
would normally be rounded off to .485.

INTRODUCTORY DIVISION DIRECTIONS

The basic computer equation AB = Cmaybe rewritten
A = C/B. Thus, to divide one number by another, set
the number to be divided on C, the number by which
you're dividing on B, and adjust A for meter null. The
answer appears on A,

|Example 4: .48 = .6 = ?]

Set .48 on C, .6 on B, and adjust A for meter null. An
answer between .785 and .815 reflects reasonable
accuracy.

S
e

+
= A

s

Schematic wiring diagram.
FIGURE 4




[Example 5: .33+ .98 = ?}

Set .33 on C, .98 on B, and adjust A for meter null.
An answer between .33 and .35 is reasonable. The
rounded off long-hand result is .337.

|Example 6: .83+ .61 = ?|

Following the procedure outlined above, set .83 on C,
.61 on B and adjust A for meter null. Null cannot be
achieved, however, since the answer is greater than
1 and A extends only to 1. To handle this problem,
write it as (.083 + .61) 10. Now, set .083 on C, .61on
B, and adjust A for meter null. The rounded off long-
hand result is (.136) x 10 or 1.36. Anything from .125
to .145 on scale A is reasonable since one of the num-
bers in the problem waslessthan.l. Computer accur-
acy is notas goodfor smallnumbersas it is for larger
numbers. Methods for getting greater accuracy in
small number problems will be described in a later
section.

HOW IT WORKS

The symbols in the schematic circuit diagram of Fig-
ure 4 arepartofthe radio-electronic symbol language
used by engineers and technicians. What the various
symbols represent is shown in Figure 5.

A circuit is ""closed" when a pathfor current exists
from one side or terminal of a battery to the other
terminal. Thus, current can flow from the positive
terminal of the battery through wires and resistance
to the other (negative) terminal of the battery. A po-
tentiometer is one form of an electrical resistance.
Straight lines designate wires ina schematic diagram,
If a wire is cut or disconnected from a terminal in a
series circuit such as that of Figure 6 there is no
path for current to flow, and the circuit is said to be
open. A switch is a connect-disconnect device that
closes and opens a circuit when it is operated. Figure
6 is similar to the left hand portion of the circuit of
Figure 4 except that a single dry cell is shown and a
swtich is not included in the circuit. :

If the dry cell in Figure 6 isa 1 volt cell there will
be 1 volt between terminals 1 and 3 (the outer termi-
nals) of the potentiometer. If the potentiometer has a
linear taper the output voltage (at terminals 1 and 2)
will be proportional to the potentiometer setting. Thus,
the output voltage will be .5 volts if the potentiometer
arm is set at mid position, or.25 volts if the potentio-
meter were set at 1/4 of full rotation clockwise from
terminal 1. Thus, if the potentiometer is provided with
a pointer knob and a scale divided into 10 equal parts
the knob may be adjusted to get 0, .1, .2, .3, .4, .5, .6,
.7, .8, .9, or 1 volt between terminals 1 and 2 simply
by setting the knob over the corresponding graduation.
The graduations can be identified and marked with
these numbers. (See Figure 7).

If the battery voltage is 10 volts instead of 1 the
voltage between terminals 1 and 2 will be 10 times
the number associated with each graduation. Thus, the

Potentiometer Switch

—
T

Dry Cell Meter

Meaning of symbols used in Figure 4.
FIGURE 5

input voltage is multiplied by some number between
zero and 1 depending on the potentiometer setting.
With the pot set at .3 for example, the voltage between
terminals 1 and 3 will be .3 x 10 or 3 volts.

The ten scale divisions can be further subdivided
into 10 units each to allow multiplicationbytwo signi-
ficant figures. This was done to produce the linear
scales for the Edmund Analog Computer.

Since the linearity (multiplying accuracy) of the
potentiometers can be in error by 1 per cent, there is
no justification for further subdivision of the scales.

If terminals 1 and 3 of a second potentiometer are
connected to terminals 1 and 2 of the potentiometer in
Figure 6, the ouput voltage of the first potentiome-
ter will be multiplied by the number between 0 and 1
set on the scale of the second potentiometer. This
arrangement corresponds to the arrangement of po-
tentiometers A and B in the Edmund Analog Compu-
ter. Thus the output voltage at pot B is 3 volts x A
X B.

The output voltage can be measured with a voltme-
ter. Small differences in voltage are, however, hard
to detect with a voltmeter. But, if a sensitive current
meter and another potentiometer are used as in the
Edmund Analog Computer circuit (Figure 4 ), ex-
tremely small voltage can be detected. The reasonfor
this is that a current will flow through the meter un-
less the voltage between terminals 1 and 2 on pot B
equals the voltage between terminals 1 and 2 on pot C.

An extremely sensitive meter (1 milliampere) has
been designed into and supplied with your calculator.
It is capable of detecting voltage differences of only a



couple of millivolts. (A millivolt is 1/1000 of a volt!)
This high sensitivity permitsaccurate nullsandaccur-
ate problem answers.

IMPROVING ACCURACY

Some sources of error have been cited in previous
sections. The largest source of error inherent to the
calculator circuit is the quality of the components.
Cheap potentiometers may have 10 to 20 per cent
linearity errors. With 3 pots of 10 percent error in a

circuit, the total error can be 30 per cent from this

source alone! Better quality potentiometers have been
used in your computer to hold the error to approxi-
mately 2% to 3%.

The accuracy of the placement of the endclamps on
the potentiometers is another factor in potentiometer
accuracy. Potentiometer shaft eccentricity or moun-
ting eccentricity relative to the scale centerare addi-
tional sources of error. The accuracy of the scales
and pointer knobs themselves influence precision.

An electrical circuit effect known as ''potentiome-
ter loading' can influence accuracy too. If pot B in
Figure 4 has a resistance of only 10 times the re-
sistance of pot A, the error from thisamount of load-
ing can approach 2 per cent on portions of the scale.
If pot B is 20 times the resistance of pot A (as in your
computer), loading error is reduced to less than 1
per cent maximum,

And, of course, your skill in detecting nullis another
factor determing the final accuracy.

The possibility of error from limited meter sensi-
tivity increases for low pot settings. Thus, if A is set
to .1 and B is set to .3, the voltage at the output of
pot Bis 3 x .1 x.3 or .09 volts. This is 90 millivolts.
Thus, a meter that can detect a null to within 2 milli-
volts (.002 volts) might introduce about 2 per cent
error for this computation. But if A is set to .5 and B
is set to .9 the output voltage at Bis 3 x .5 x .9 or
1.35 volts and the error appraches zero.

The greatest sources of error that most builders
will encounter will be due to hasty construction and/or
hasty calculation.

The principal mechanical source of error is poor
adjustment of the pointer knobs.

The principal sources of error introduced during
calculation are poor scale interpretation and failure
to insist on accurate nulls.

Errors from all sources can be reduced in some
cases by making a series of test calculations using
increments of .1 (for easy mental checking) and then
determining how small changes in knob setting might
influence overall accuracy. The process can be re-
peated till the experiment yeilds the best overall
accuracy.

SCALES AND USAGE

Your calculator has, in addition to the linear scales
already discussed, the following scales:

Sine 0-90 degrees (sin)
Cosine 90-0 degrees (cos)
Logarithm 1-10 (log)
Tangent 0-45 degrees (tan)
Cotangent 45-0 degrees (cot)

The sine and cosine scales utilize the same gradu-
ations since they are complementary over 90 degrees.
Sine degrees are marked on the outside and cosine
degrees are marked on the inside of the graduated
circle.

The tangent and cotangent scales also have a spec-
ial relationship and utilize the same graduations.
Tangent degree numbering is on the outer edge of the
inner scale and cotangent numbering is on the inside.

To aid you in making computations rapidly, the
scales have been limited in number, and the scales
for all the pots have been made alike for easy inter-
pretation.

With the scales provided you can perform multipli-
cation, division, raising to power (squaring, etc.),
root taking, logarithmic, andtrigonometric operations.

Your computer can handle, in addition to functions
mentioned, secants, cosecants, tangents and cotangents
out of the ranges on the scales, and numbers much
greater than those marked on the linear scale. The
next sections tell you how to use your calculator for
a wide range of problems.

[ )

Single potentiometer multiplier.
FIGURE 6

USING POWERS OF TEN

Even if you are still very muchof a beginner in math-
ematics, you have probably already met the concept of
"power' inthe mathematical sense in such expressions
as x2 or 43 . Ineither of these cases the number writ-
ten above and to the right is calledan exponent, and it
signifies that the quantity which it modifies is to be
multiplied by itself a certain number of times. For
example, 42 means 4 x 4 or 16. 23 means 2 x 2 x 2 or
8. 10° means 10 x 10 x 10 x 10 x 10 or 100,000, and
sSo on,

If the exponent is a 2 or a 3, it is usually read as
"squared" or "cubed' respectively. Thus 32isusually
read as "three squared" and y3 is usually read as 'y
cubed." Larger exponents are usually read as '"pow-



Basic graduations for a potentiometer scale.
FIGURE 17

ers." For example 127 is ordinarily read as "twelve
to the seventh power." Sometimes this is shortened
to ""twelve to the seventh."

In the following table we show various powersof ten
as they are conventionally written and as they are
written with exponents. Note that in addition to 101,
102, 103, and so on, we also include 109, and 10-1,
1072, 1073, etc. If you have not as yet been introduced
to zero and negative exponents, then you'll just have
to take our word that they truly do represent the
quantities shown in the table, as we do not have suffi-
cient space to go into the explanations here.

One million 1,000,000 108
One hundred thousand 100,000 105
Ten thousand 10,000 104
One thousand 1,000 103
One hundred 100 102
Ten 10 10l
One 1 100
_______________________________ 0 e — e ———————
One tenth .1 10-1
One one-hundredth .01 10-2
One one-thousandth .001 10°3
One ten-thousandth .0001 1074

.00001 1079
.000001 10-6

One one-hundred-thousandth
One one-millionth

There is a relatively easy way to remember the re-
lationship between the various powers of ten and the
numbers as conventionally written. Note in the table
that 106 is the same as 1 followed by 6 zeros. 104 is
the same as 1 followed by 4 zeros. Whenever the ex-
ponent is a positive number, then the exponent is
equal to the number of zeros that come after the 1 in
the number as conventionally written.

(Caution: don't fall into the trap of thinking
for example that 1011 means ten followed
by eleven zeros. It means one followed by
eleven zeros. For a quick easy check, until
you are accustomed to using this system,
always remind yourself mentally that 102is
100 and. that 100 is one followed by two
zeros.)

When the exponent is negative (examples: 103, 10-5)
then the exponent is equal to the number of decimal

places in the number as conventionally written. Note
that 10-2 is the same as .01 (two decimal places) and
that 1079 is the same as .00001 (5 decimal places).

Mathematicians and scientists of all sorts commonly
handle all very large numbers as multiples of powers
of ten. You can readily see why. It would be very
clumsy, for example, to do computations concerning
the amount of energy radiated by the sun if you had to
use the expression 3,800,000,000,000,000,000,000,000
000,000,000 ergs per second. It is muchmore conven-
ient to express this as 38 x 1032 ergs per second.
(Actually it is more commonly expressed as 3.8 x
1033, which is of course exactly the same thing.)

The use of such an expression not only saves time
and space but, what is far more important, has a
distinct advantage in multiplication and division. To
multiply powers of ten, all that is necessary is to add
the exponents. To divide them, subtractthe exponents.

Some examples will show clearly how this happens.
You know that 100 x 1,000 is 100,000. Writing this in
powers of ten: 102 x 103 is 10°. 2 plus 3 equals 5.
1,000,000 divided by 100 is 10,000. Writing this in
powers of ten: 106 divided by 102 is 104. 6 minus 2
equals 4.

Now let's see how this is usedinan actual problem.
Suppose you wish to multiply 378,000 by .000012.
Simplify this by thinking of it as 378 x 103 multiplied
by 12 x 10-6,

Now multiply 378 x 12 to get the product 4536. Next
add the exponents of the powers of ten: 3 plus -6 equals
-3. The resulting exponent (-3) tells you that there
will be three decimal places in your result, which is,
therefore, 4.536.

The first few times you use this system you will
probably find it very clumsy. If you persevere, how-
ever, you will soon find it becoming second nature to
you and you will come to look on it as a great time
and trouble saver.

By applying this system to your computer, you will
find that you can handle numbers that are well outside
the range of the calibrations on the scales. If you are
dealing, for example, with the number 375, you will
express it as .375 x 103. The number .00000896 will
become for you .896 x 1072,

ﬁi:xample 7: 37 x .092]

Use the same potentiometer setting as .37 x .92 (ex-
ample 2). The problem reduces t0.37x 102x.92x 10'1.
The answer is the C pot setting at null times 10,

Problems with small numbers are also easier to
handle with powers of 10.

JExample 8: .000855 x .00000567]

This can be written as .855 x 10-3 x .567 x107°,
The pot settings are the same as for example 3. The
result on pot C is multiplied by 10-3x1075 or 10°8,



[Example 9: 480 = 6|

This is .48 x 103 - .6 x 10 which reduces to (.48 = .6)
103-1 or (.48 + .6) 102. The pot settings are the same
as for example 4, and the result on pot A is multi-
plied by 102, The answer is 80.

330 - .98]

Write as .33 x 103 < .98, The pot settings are the
same as for example 5. The result on pot A is multi-
plied by 103. The answer is 337.

[Example 10:

[Example 11: 083 < 610}

If you write this as .83 x 10-1 Z 61 x 103 you know
from example 6 that you can't get a null on A. To be
sure that you can get a null on A for a given division,
write the problem as a fraction. If the mimerator (top)
exceeds the denominator (bottom), you won't geta null.
Therefore, point off another place in the numerator.
Thus, .83/.61 is greater than 1 but .083/.61 is less
than 1.

Write .083 + 610 as .083 > (.61 x 103). The result
on pot A is multiplied by 103 (divided by 10~3). It's

.136 x 1073 = _000136.

‘Practice Problems, Set A (Solutions mbackofManual]
1. .93 x .78
2. .36 x 94
3. 1.4 x .07
4. .0026 x 5.8
5. 362000 x 94
6. 33> 78
7. 78 - .92
8. .63 + 198
9. .078 = 39
10. 63000 = 39

SQUARES AND SQUARE ROOTS

To square a number, set the number on pots A and B.
Adjust pot C for meter null. The result appears on C.
Use powers-of 10 as required.

.42 |

Set .4 on A, .4 on B and adjust C for null. The result
.16 appears under the hairline on C.

[Example 12:

[Example 13: 402}

This is (.4 x 102)2 which is .42 x (102)2which is .42 x
104. Pot settings are the same asfor example 12. The
answer is .16 x 104 or 1600,
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[Example 14: " 52002 ]

This is (.52 x 104)2 or .522 x 108, Set .52 on A and B
and adjust C to null. Read number under hairline on

pot C. The answer is .2704 x 108 or 27,040, 000.
[Example 15: 00092 ]

This is .92 x (10-3)2 or .92 x 10-6. The result is .81
x 1076 or .00000081.

To obtain the square root of a number, break it up
into a number between .1 and 1 multiplied by a power
of 10. i the power of 10 is an even power (102, 104,
106, 10-2 etc.) set the other number on pot C and ad-
Just A and B till they indicate the same value at null.

|Example 16: V3200 |

Write this as .32 x 104. Set.320n C. Now adjust A and
B till they read the same value atnull. An easy way to
do this is to set A andBat 1. Then depress the switch
with the small finger of your left hand while you use
thumb and index finger of the left hand to rotate pot A
and the right hand to rotate pot B. Rotate A and B at
nearly the same rate. Then A and B will be relatively
close to the same value when you approach null. and
it will be a relatively easy matter to trim them up to
the same value for a null. Pots Aand B null at .566 in
this case. The square root of 104 is 102 (divide the
exponent by 2 to take the square root of a power of 10),
and .566 x 102 is 56.6.

¥ you're taking the square root of a number that
isn't a number between .1 and 1 multiplied by an even
power of 10, there are two ways to proceed.

IExa.mple 17: v/ 320

Method 1: When you reduce 320 to a number between
.1 and 1 times a power of 10 you have .32 x 103. You
can proceed as outlined for the even power of 10 case.
Then leave the result (.566) set on pot A, set pot B to
-316 (the square root of .1) and adjust pot C for meter
nmull. The result (.179) will appear on C. This number
multiplied by 100 is the answer. Mathematically you've
broken the problem up as follows:

v320 -=-V.32 xV1i03 -V .32
¥ .32 x¥.316 xV102.

xV10-1 xViod -

Method 2: Write 320as .032 x 104. Then set
-032 on pot C and adjust A and B for equal value at
null. This method is not recommended because accu-
rate nulls are difficult to obtain at small scale values.

a0 + 0. .< =




Practice Problems, Set B (Solutions in back of mil
1. .39

682
. .0792
92

ik

290
.008
6320

© e N e oo

49
4.9

794

._.
e

SINE-COSINE GPERATIONS

The sine-cosine scales are employed for multiplica-
tion and division in the same waythat the linear scales
are used.

[Example 18: .41 cos 56 |

Set .41 on scale A and cosine 56 on scale B. Adjust C
for meter null. The result .239 appears on the linear
scale of pot C under the hairline. Note that the cosine
scale increasesfrom zeroto 90 degrees in the counter-
clockwise direction. The linear scale and the sine
scale increase in the clockwise direction.

|Example 19: 78/sin 62 ]

Set .78 on linear scale of C, sine 62 on B, and adjust
A for null. Read result .884 under hairline on the
linear scale of A. This result must be multiplied by
100 (since 78 was divided by 100 in the operation) to
yield the answer 88.4.

[Example 20:  86/sin 23 |

.86/sine 23 is greater than 1. Therefore, set .086 on
linear scale of C, sine 23 on B and adjust A for null.
Read .22 on linear scale of A. Since 86 was divided
by 1000, the result must be multiplied by 1000. The
answer is 220.

TANGENT-COTANGENT OPERATIONS

The tangent-cotangent scales are employed in the
same way as the linear scales for tangents of angles

~équal to or smaller than 45 degrees and cotangents of
angles equal to or larger than 45 degrees.

|[Example 21: 61 tan 38 |

Set .61 on linear scale of A, tangent 38 on B and ad-
just C for meter null. The result .476 appears under
the hairline on the linear scale of C. The answer is
47.6.

n

E::xample 22: 81 cot 69]

Set .81 on linear scale of A, cotangent 69 on B (the
cotangent scale increases in the counter clockwise
direction) and adjust C for meter null. The result
-311 appears under the hairline on the linear scale of
C. The answer is 31.1.

The tangent of an angle is equal to the reciprocal
of the cotangent. Thus, to multiply by the tangent of
an angle greater than 45 degrees, simply divide by the
cotangent.

[Examplc 23: 31 tan 56]

Rewrite the problem as 31/cot 56. Set.31on C, cotan-
gent 56 on B, and adjust A for meter null. The result
-46 appears under the hairline on the linear scale of
A. Answer is 46.

In like manner to multiply by the cotangent of a
number between 0 and 45 degrees, simply divide by
the tangent. A little thought will produce a number of
ideas for using the tangent-cotangent scales in multi-
plication and division. This is left as an exercise for
the user.

et

[Practice Problems lutions in back of Manual
1. 421 sin 47
2. 9.6 cos 31
3.  45.3/cos 51
4 .6/sin 38
5. 32 tan 40
6. 46 cot 40

LOGARITHMIC OPERATIONS

The use of the logarithmic scales requires some know-_
ledge of logarithms. The principal application of these

scales will be associated with powers and roots. The

accuracy of operations with the logarithmic scales is

very limited. The magnitudes of numbers andthe rapid

rates of change associated withlogarithmic cycles re-

quire special logarithmic computer instrumentation

for accurage results.

The principle employed in handling powers and roots
with logarithms is that when xA = y, the relationship
may be expressed as A log x.=log y. If A is a number
greater than 1, the quantity x will be raised to a pow-
er. H A is less than 1, a root.of x will be obtained,

[Empic 2s:57]

Set A to .2 on the linear scale, B to 5 on the log scale
and adjust C for meter null. On the C linear scale
you'll read about .14. Since 2 was entered on A as.2,
the .14 reading on C shouldbe interpretedas 1.4. This
number is log y. Now, to find y, rotate pot C to the
number after the decimal point (.4) onthelinear scale
of C. Under the hairline on log scale of C you'll find




2.5. The 1 in front of the decimal point in the 1.4
result obtained previously indicates that 2.5 shall be
multiplied by 10. The result therefore is 25.

If the number preceding the decimal point is zero,
the number indicated by the part after the decimal
point is not multiplied. If a 2 appears ahead of the
decimal point, multiply by 100. A 3 indicates multipli-
cation by 1000 etc. The reason for this is that 0 is
log 1, 1 is long 10, 2 is long 100, 3 is log 1000,4 is log
10,000, etc. The logarithm of numbers between 1 and
10 is a number between zero and 1. This should be
apparent from examining the scales.

In performing this example the tremendous chance
for error in logarithmic operations ina basic calcula-
tor should be apparent. In computers employing less
accurate potentiometers thanthe Edmund Analog Com-
puter, errors can become fantastic. Logarithmic oper-
ations on the Edmund Computer are, however, useful
for checking or estimating powers and roots.

73 |

Set .3 on A linear, 7 on B log, and adjust C for null.
Read .254 on C linear. Since .3 on A represented 3,
.254 on C represents 2.54. Rotate to .54 linear on C.
Read 3.45 on C. log. This should be multiplied by 100
(102, the log of 2) which gives the result 345. The
long-hand result is 7x 7x 7 = 49 x 7 = 343.

Note that if you had interpreted .254 on C linear as
.25, the final result would have been about 315. If you
had interpreted .254 as .26 onClinear, the final result
would have been 400!

IExample 26: 94.3 |

This is a problem that requires logarithmic operations,
for solution. Set .43 on Alinear, 9on B log, and adjust
C for null. On C linear result is about _41. Again this
result means 4.1. Set C to .1 linear. Read 1.26 on the
log scale of C. 1.26 x 104 = 12,600. The actual result
is closer to 12,700, but if You obtained a result be-
tween 12,500 and 12,900, you did quite well. Any num-
ber in that range is roughly within 2% accuracy!

lchample 217: '\4/ 9

49 can be written as 9 1/4 which is 9 -25, Set .250n
A linear, 9 on B log, and adjust C for null. Read 1.73
on C log scale. Direct reading onlog scale is possible
since the scale of A was unmultiplied.

Other operations with the logarithmic scales will
be apparent to the more advanced student,

IExample 25:

APPLICATIONS

Uses for the Edmund Analog Computer are numerous.
It can handle many different problems in arithmetic,
geometry, trigonometry, algebra, analytic geometry,
mechanics, electricity, electronics, heat, light, sound,
etc. The range of application is limited principally to
the knowledge and ingenuity of the user.
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GEOMETRIC APPLICATIONS

Example 28: Find the area of a rectangle 9.5 by 4
inches.

Set .95 on A linear, .41 on Blinear, and null C linear.
Result is .39. Findthe decimal point by mentally multi-
plying 10 x 40 = 400, indicating that the answer is 390
square inches. Thisis anapplication of the area formu-
la for a rectangle, A = bh,

IExample 29:

This is an application of A = 1/2 bh. Set .42 on A
linear, .87 on B linear and null C. Set result on C
linear on pot A and set pot B to .5. Null C again. The
result on C linear is .183. Supply scale factor of 100
to get answer 18.3 square inches.

lExample 30:

Find the areaofa triangle witha base o
4.2 inches and an altitude of 8.7 inches.

A circle has a diameter of 9 inches.
Find the circumference.

C = 2flr = 7d. Set .314 on A linear (this is 77/10) and
-9 (diameter/10) on B linear. Adjust C for null. Result
on C linear is .283. Applying scale factor, the answer
is 28.3 inches.

'E;zample 31:

A = 7r2, Set .97 on A and B linear and null C., You
obtain r2/100 on C linear (.94). Set this value on B
linear, and set .314 on A. Null C. Result on C linear
is .294. Scale factor is 1000. Therefore the answer is
294 square inches.

Geometric applications include the formulae enu-
merated below. These formulae are stated in words be-
cause symbols sometimes vary from book to book or
teacher to teacher. Usual symbols are A for area, b
for base, h for height or altitude, V for volume, C for
circumference, r or R for radius, 1 for length, w for
width.

Area of a Rectangle = base x height

Area of a Parallelogram = base x altitude

Area of a Triangle = 1/2 base x altitude

Area of a Trapezoid = 1/2 altitude x sum of par-
allel sides

Area of a Circle = 77x (radius squared)

Area of an Ellipse = 7//4 x Major Axis x Minor
axis

Area of a Cycloid = 3f2-xHxheight 3/4 x Jix HAL

Area of a Parabola = 2/3 axial length x mouth

Find the area of a circle witha 9.7 inch
radius.

width
Volume of a Parallelopiped = length x width x
height
Volume of a Cone =7/ 3 x (radius of base squared)
x height

Volume of a Cylinder =
squared) x height
Volume of a Pyramid = Area of base x height
Volume of a Sphere = 4/3 x 7 x (radius cubed)
Surface of a Sphere = 77 x (diameter squared)
Circumference of a Circle = 71 x diameter

Tx (radius of base




TRIGONOMETRIC APPLICATIONS

The right triangle shown in Figure 8 is a general
right triangle. The angle D does not necessarily have
the number of degrees drawn in the illustration and
other features of the triangle can vary accordingly.
Angle F is always a right angle. These relationships

apply:

sin D= y/z
cos D= x/z
tan D = y/x

csc D= 1/sinD = z/y
sec D= 1/cosD = z/x
cot D= 1/tanD = x/y

The relationships for angle Eareleftasan exercise
for the student.

Although secant and cosecant scales arenot marked
on the calculator scales (too many scales become
confusing), they can readily be obtained.

|Example 32:  Find csc 50 ]

Set C linear to .1, B to sine 50, and null A. Result on
A linear must be multiplied by 10 (since .1 stood for
1 on C). The answer is 1.3.

Follow the same procedure with cosine on B to find
the secant on A,

Frequently problems involve the knowledge of an
angle and a side of a right triangle, and another side
of the triangle must be calculated. Height finding pro-
blems, distances across streams, electrical, optics
and vector problems are but a few of the many appli-
cations. The operation of the trig scale wasdiscussed
in the previous section, and examples here will merely
illustrate the application of trigonometry.

X

General notations for right triangles.
FIGURE 8
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xample 33: The hypotenuse of a right triangleis 4.
inches. The angle between the hypot-
enuse and the base is 56 degrees. Find

the length of the base and the height.

In Figure 8, z is the hypotenuse, x is the base, y is
the height, and D is the given angle. You're to find x
and y. You know z (4.1) and angle D (56 degrees). The
definition of sine D and cosine Dcontainz, Therefore,
you use these fuctions.

x=zcos D
y=2zsin D

(see example 18)

Example 34: A plane is traveling in a direction 62
degrees North of East. It's component
of speed in the northerly direction is

78 mph. What is the speed of the plane?

y in Figure 8 is 78 mph, D is 62 degrees, and z is
the speed of the plane.

z = y/sin 62 (see example 19)

@xample 35:

—

The sine of an angle is .91. What is the
cosine ?

No computation is necessary. Adjust hairline to.910on
the linear scale of any of the pots. Read 65.4 degrees
on the sine scale. Set pointer to 65.4 degrees on the
cosine scale, and read opposite value on the linear
scale (.415). Similar operations can be employed be-
tween all scales.

Logarithms appear in algebra and trig courses. The
log scales have applications beyond those outlined in
the section on operations.

|[Example 36: Find the logarithm of 320,000.

l |

Set the hairline of any pointer over 3.2 on the log
scale. The mantissa appears under the hairline on
the linear scale. It is .505. The characteristic is the
power of 10 that 3.2 must be multiplied by to yield
320,000. 3.2 x 10° = 320,000. The characteristic is
5. The logarithm is 5.505.

Example 37: The logarithm of a number is 3.78.

What is the number?

Set the hairline over .78 on the linear scale. Read the
log scale. This number 6.03 must be multiplied by 103
(implied by the characteristic 3). The antilog of 3.78
is 6,030.

It should be apparent that the scales on the Edmund
Analog Computer may be used as complete trigono-
metric and logarithmic tables.

Trigonometric formulae and identities appear in
texts on trigonometry and in handbooks. Theformulae
and identities will extend the use of the calculator.
Many of the identities may be checked on the calcula-

. S -




PHYSICS AND ENGINEERING APPLICATIONS

Mechanics, Electricity, Heat, Light, Optics, Sound,
Electronics, Fluid Mechanics, Modern Physics and
other fields that are recognized as fields of speciali-
zation or engineering are grouped under this heading.
It is apparent that only a small number of the many
applications of the calculator can be discussed here.

Example 38: Mechanics - Applicable rectilinear;

kinematics formulae

Symbols are v - velocity, s - distance, t - time, a -
acceleration, g - acceleration of gravity (32 ft./sec2).
Subscripts: 1 - initial, 2 - final, n - normal, t - tan-
gential. Units: t (seconds), s (feet), v (feet/ sec), a (ft.
/sec2). "g" may be substituted for a in the following
formulae when gravity is the cause of acceleration.

Uniform Velocity: v = s/t, s= vt

Uniform Acceleration: a= vg - v1, v2=v] +at,

t

s = vit + 1/2at2, s= v92 - vi2, va=
—————————

2a

A/ v12 + 2as. Additions or subtractions must

be done on paper. It'salwaysa goodidea to keep paper
handy when working problems to record intermediate
results.

Example 39: Mechanics - Applicable‘ circular kine -
atics €,

A, = vt2/r where v isuniform. Circular motion angle
(@) in radians, angular velocity (W) in radians per
second, and angular acceleration (X) in radians per
second? correspond to s, v, andtinexample 38. "t" in
seconds is the same as in example 38. The formulae
of example 38 shall be rewritten with @ substituted for
s,w for v, and X for a by the student in the space
below:

When Angular velocity is constant, where n is the
number of revolutions, and r is the radius, 6= 27 n,
w=6[t, W= 2MWnlt, @= 5St|/r, W= Vt/r.

~ X @& - T
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Notations for projectile problems.
FIGURE 9

Example 40: Mechanics - Projectile Motion. Units

same as for rectilinear motion.

See Figure 9. The projectile leaves the muzzle with
velocity vi. The velocity component in the x direction
is vy = v} cosine®. This component of velocity is
retained through the trajectory. The velocity com-
ponent in the y direction is vy = v) sin 6 - gt where g
is 32 ft/sec2. The distance traveled in the x direction
in t seconds is vy t. The distance traveled in the y
direction in t seconds is y = vit sine & - 1/2 gt2. The
range that the projectile will cover in the x direction
to impact is (v12 sine 20)/g. These relationships as-
sume wind resistance zero, flight across a straight
surface, and impact at the altitude of firing. Additional
relationships exist. The derivation of these areleftas
an exercise for the student.

Example 41: Mechanics - Kinetics:m is mass (weight
in pounds divided by 32 ft/sec2), a is
acceleration in ft/sec2, w is weight in

pounds, F is force in pounds.

F - ma = (w/gla.

W is work infoot-pounds, s is distance in feet. W= F's,
P is power in foot pounds/second. P = W/t = Fs/t.
Energy has the same units as work. Potential energy
is energy of position Wp =whwhereh is position above
a reference point. Kinetic energy Wy = mv2/2, These
computations can be easily handled on your calculator.

e ™

Iﬁxample 42: Mechanics-Simple Pendululﬁ]

The period t of a simple pendulum (Figure
10) is7 V' 1/g, where t is in seconds, 1 is
in feet, and g is 32 ft/sec2. The length of
a simple pendulum with a period of one {
second is g/77 2 feet. Asanexercise com-
pute the length on your calculator. (Set on
A and B linear, null C. Transfer result
on C linear to B. Set 32 on C and null A.
Read result on A linear.) Hint: 77 2 is a (5 v
constant that occurs frequently.7”7 2 = 9.9 -
is easy to remember. Now try the pro- _ =S
blem again. Easier, eh? Now that you've HG“RE ]0
computed it, why not make a pendulum and try it? A
piece of string, a weight, and a place to fasten the
pendulum are all you need.




|Example 43: Other Mechanics Applications]

Check in physics textbook on friction, coefficient of
friction, moment of inertia, momentum and impulse.

|[Example 44: Unit Conversions}

Frequently units in one system must be converted into
units in another system. Convert a foot to centimeters.

1ftx12inx 2.54 cm =
1 ft 1 in

cm.

This reduces to a multiplication problem and is left
as an exercise for the student.

|Example 45: Mechanics - Statics]

Refer to Figure 11. A weight of 100 pounds is support-
ed at vertex D. x is a horizontal member 3.2 feet long
pushing against wall y and z is a guy wire 4.5 feet
long fastened at vertex E. What is the force against
the wall at vertex F? Fy is the tension in z, Fg is the

force against the wall.
S~

Fj = 100/cos D
Cos D= x/z = 3.2/4.5
Fg = F; sin D = 100 tan D

Final solution is left as an
exercise for the user. Check
section on statics in a physics
book for more details and ex-
amples.

F

FIGURE 11

xample 46: Electricity - Magnetis
P Y {4

F = mj my/ a2 where m; and mgy are the respective
pole strengths of two poles separatedbyd centimeters.
F is measured in dynes. Magnetic Intensity H in oer-
steds at d centimeters from a pole of strength m is
m/d2. The magnetic flux density B producedbya field
intensity H in a medium of permeability # is 4 H.
Somewhat analogous relationships exist for electro-
statics, except that units differ slightly.

[Example 47: Current Electricity |

E is electromotive force in volts, Iis rate of charge
flow in amperes, Q is charge in coulombs, R is re-
sistance in ohms, P is power in watts, and t is time
in seconds.

E = IR, I=E/R, R=E/L P=EL P=I2R, P= E2/R,
I=Q/t.

If more than one resistor is connected in series
(see Figure 12) the same current (I) flows through
each, thetotal resistance isthe sum of the resistances,
and the applied battery voltage is equal to the sum of
the voltage drops across the individual resistors.
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H more than one resistance is connected in parallel

across a battery (Figure 13) the voltage across each
resistance is the same as the voltage of the battery,

the current provided by the battery is equal to the
sum of the currents through the resistances, and the
total resistance seen by the battery is E/I where I is
the total current.

b Y T T
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Series electrical circuit.
FIGURE 12

[Example 48: Electricity - Alternating Currents]

Inductive Reactance Xy, = 271l where f isfrequency in
cycles and L is inductance in henries. Tan 0= X/R
where @ is phase angle, X is reactance, and R is re-
sistance. Z = R/cosine 8 = X/sine @. Expressions for
capacitive reactance and resonant frequency are left
as research work for the user.

Civil l-'lngineering - Properties of

F:xample 49:
| Materials

Stress S = F/A where F ispoundsand A is cross sec-
tional area. The elongation or deflection d per unit of
length 1 is sometimes referred to as strain. Young's
modulus Y = S1/d. Exercise: Look into bulk modulus
and shear modulus. These computations handle readily
on your calculator.

>
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Example 50: Fluid Mechanics - Hydrostatics

Density d = M/v where M is mass and v is volume.
Pressure p = F/A where F is force and A is unit
area. Check properties of gases and surface tension.

It is easy to see thatthelist of example applications
could be endless. In electricity and electronics there
are many more formulae which the calculator will
handle. The same is true of other fields, No examples
in Optics, Heat, Sound or Modern Physics have been
given. These are left as fields for researchand exer-
cises for the user.

There are plenty of problems with answers given
in math and physics textbooks. These will augment the
problems in this manual. You'll find that your calcu-
lator has wide applicability in every field.

WMM
Parallel electrical circuit.
FIGURE 13
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PRACTICE PROBLEM SOLUTIONS (Approximate)

.726

SET A, page 10 43 8

1.

2.

3. .098

4. .0151
5. 3.4 x 107
6. .423

7. 84.8

8. .00318
9. .002
10. 1,620

SET B, page II .152

.96
8.9
24.3

79.6
7
2.22

SRR,

-

SET C, page Il 308
7.66
72

.975
26.8

54.8

LR e

4620
.622 x 102 = 00622

.0895









